NASA GSFC's Integrated Design Capability

I DC Overview Briefing Topics in Engineering 5 (TE 5) New Design Paradigms Workshop

Ellen Herring Goddard Space Flight Center/Code 703 Greenbelt, MD 20771-0001 301-286-7393 ellen.herring@gsfc.nasa.gov

June 26, 2001

I DC Overview Agenda

- Background and Resulting Goddard Environments
- Integrated Design Capability
- Mission Statement
- Characteristics
 - Services and Products
 - Design Support
 - Areas Represented
 - Tool Sets
 - Study Process Overview
- Areas of Future Emphasis
- Summary

Background

♦ Why Rapid Design Environments ?

- Previous process inefficient(e.g., too many meetings, too many people involved, too much juggling study time with project work, etc.)
- Tied up too much of ever-decreasing resource pool
- Studies took too long to complete
- Vulnerable to inconsistent results and possibility of not meeting Customer needs and/or expectations

Resulting Goddard Environments

- Integrated Mission Design Center (IMDC)
 - Operational facility since Fall 1997
 - Performed over 100 studies since inception
 - Over 30 studies performed in both CY00 and in CY01
 - http://imdc.nasa.gov
- Instrument Synthesis & Analsyis Laboratory (ISAL)
 - Operational facility since Spring 1999
 - Nearly 20 studies performed since inception
 - 6 studies performed in past 4 months; 2 studies consisting of 6 instrument complement

http://isal.gsfc.nasa.gov

Spring 2001:

operations and growth of the IMDC and ISAL under one management structure

Integrated Design Capability (IDC)

Integrated Design Capability Mission Statement and Approach

◆ IDC Mission Statement:

- Provide high-quality, rapid mission design and remote sensing instrument concepts that meet or exceed the requirements in the most timely & cost effective manner
- Include infusion of technology and processes to continually advance our ability to do design work and to extend value of product

IDC Services and Products

- Serve a diverse group of customers
 - NASA Centers ... all enterprises
 - Academia
 - Other Federal Agencies
 - Industry
- Ability to support local and/or distributed teams
- Provide diverse set of final products in form/media per Customer specifications

- Provide diverse services tailored to Customer needs
 - End-to-End Concept Studies
 - Focused-Studies
 - Independent Technical Assessments
 - Technology and Risk Assessments

IDC Design Support

Integrated Mission Design Center

Low earth, geosync, libration orbits, balloon flights, deep space

Single spacecraft missions, formation flying, constellations

Custom vs. commercial spacecraft Expendable vs. non-expendable launch

Instrument Synthesis & Analysis Laboratory: Instrument Families

Planetary Orbiters
Cosmic Ray Telescopes
X-ray Telescopes
Solar Physics Instruments

Passive/Microwave Radiometers
Infrared Cosmology Instruments/Telescopes
Optical Molecular Sensors
Large Weather Satellites

IDC Areas Represented

◆ Integrated Mission Design Center

Systems Power Spacecraft bus assessment

Mission Design C&DH Launch Vehicle

ACS Communications Ground Systems

Propulsion Flight Software Data Processing

Mechanical - CAD Reliability Mission Operations

Thermal Integration & Test Costing

♦ Instrument Synthesis & Analysis Laboratory

Systems Thermal/cryo Optical

Electro-mechanical Opto-mechanical Detectors

Mechanical Analysis Integration & Test Costing

IDC Tool Sets

 Mix of Commercial-Off-The-Shelf (COTS), Government-Off-The-Shelf (GOTS), and Homegrown, e.g.,

Satellite Tool Kit FreeFlyer

IDEAS Pro-E

FEMAP SINDA

MathCAD Code V

Mathematica ZEMAX

CAGE/CLASS AutoCad

MATLAB/Simulink TSS

PASTRAN/NASTRAN

Internal Databases, e.g.,

Pre-Work Databases
Mission Design Archives
Component Catalogs

Spacecraft Bus Catalog

IDC Study Process Overview

- Initial Contact and Scheduling
 - 1-4 months prior to need date
- Planning and Preparation
 - 1- 6 weeks prior to study execution
- Study Execution
 - Dependent on study scope; typically 4 day duration for IMDC end-to-end mission study and on the order of 1-4 weeks for an ISAL instrument study
 - I terative, collaborative design sessions followed by presentation of final results to Customer Team
- Study Wrap-Up
 - 2-3 weeks following study execution

Accelerated mission design process resulting in higher quality product at a fraction of previously required schedule and resources

IDC Future Increased Emphasis

- ◆ IMDC and ISAL system and process integration
- ◆ Technology infusion and feedback to technology strategic planning
- Knowledge capture and feedback into future missions
- Cost estimation and tracking to requirements and risk
- ◆ Distributed Collaborative Environment emphasizing partnerships across design centers
- Extension of data and tools beyond formulation phase demonstrating product utility over full life cycle
- ◆ Access to Aerospace vendors' component data bases
- Broader partnership base and implement extended data sharing
- Links to higher end tools, simulations, data models, visualizations, etc.

IDC Summary and Benefits

◆ Summary: Proven engineering in updated manner

Accelerated development of state-of-the-art, end-to-end mission system concepts have been successfully demonstrated to be feasible and of significant value in an on-going operational environment

Benefits:

- Increased and improved Customer involvement
- I mproved product consistency and quality
- Reduced schedule and labor requirement
- Infusion of end-to-end system perspective
- Infusion of development experience
- I mproved technology infusion
- Strategic identification of enabling technologies
- In place operational test-bed for verifying, applying, and migrating advanced capabilities and products
- Individual technical and career growth opportunity